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ABSTRACT 

 
A key question which needs to be addressed and answered with regard to 

successfully implementing structural health monitoring technologies involves the 
long-term operability, durability, and survivability of integrated sensor systems and 
their associated hardware. This is particularly true for structural health monitoring in 
aerospace systems, where integrated sensors are expected to perform and function 
effectively for many years under widely varying environmental conditions. In this 
research effort, the performance characteristics of surface-bonded piezoelectric 
sensors were studied under accelerated exposure conditions typically found in 
operational aircraft environments. Evidence of both gradual and abrupt sensor 
performance degradation was experimentally observed due to undesired load transfer 
processes between the substrate material and the sensor, which resulted in sensor 
disbond and cracking events. Models were developed to better understand the critical 
shear-strain and viscoelastic conditions present in a typical surface-bonded sensor 
system, which permitted key material parameters related to bond and piezoelectric 
material type to be identified.  It is hoped that the results will help in making 
improved bonded sensor system design choices based on the long-term exposure 
conditions expected in typical aircraft flight environments. 

 
 

INTRODUCTION 
 

For aerospace systems, the use of structural health monitoring (SHM) as part of a 
larger integrated systems health management (ISHM) strategy offers the potential for 
monitoring the structural health of an aircraft system with far-reaching consequences 
and benefits [1]. By continuously monitoring the structural integrity of an aerospace 
system, ISHM systems will provide an unprecedented means for detecting, tracking, 
diagnosing, and predicting damage states within aircraft and spacecraft systems. This, 
in turn, will result in more efficient and effective maintenance, increased flight safety, 
increased asset availability, and improved performance levels.  

A critical component of the aerospace health monitoring system involves the use 
of integrated sensors to interrogate and diagnose the health state of a structure. Three 
major types of sensor systems have been proposed for ISHM including: 1) surface 
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bonded sensors on existing structures, 2) integrated sensors within newly fabricated 
aerospace components, and 3) smart, self-sensing, multi-functional materials [2-4].  In 
all three cases, the integrated sensors become a part of the structure, and are therefore 
subjected to the dynamic stress conditions existing in an operational aircraft or space 
environment. If not accounted for, these in-service conditions can have an adverse 
affect on the performance of the sensor system regarding long-term durability, 
survivability, and operational performance of the system over extended time periods.   

Previously published work [5-8] has shown that the performance of a surface-
bonded piezoelectric sensor can degrade due to environmental stresses, resulting in 
undesired sensor disbond and cracking events. In this research effort, several 
representative examples of environmentally-induced damage to surface-bonded 
piezoelectric sensor disks are provided. A basic analysis of the stress-strain 
relationships for a bonded sensor system is also developed.  The analysis considers the 
stresses induced in an adhesively bonded sensor from stress fields existing in an 
underlying substrate. In particular, the load transfer mechanism from the substrate 
through the adhesive layer into the sensor is studied. The relative stiffness ratios 
between the substrate and sensor materials, and the viscoelastic properties of the 
adhesive layer were found to be key parameters with regard to improving load transfer 
conditions, stress-strain conditions within the sensor, and ultimately sensor durability. 

 
   
SURFACE-BONDED SENSOR DURABILITY STUDIES  

  
Several researchers have recently begun to study the durability and long-term 

performance of surface bonded piezoelectric sensors [5-8]. Piezoelectric materials are 
naturally brittle, and therefore require special care with regard to understanding their 
performance features and potential failure modes and damage mechanisms. Figure 1 
provides three examples of piezoelectric sensor performance for thin wafer disks 
attached to a thin aluminum panel. The measurements results depicted in Figure 1 
were obtained using a noncontact displacement-field imaging technique [9,10], which 
provides a measure of the out-of-plane motions for the piezoelectric disks as gray-
level images. Figure 1a provides an example of a normally functioning, non-damaged 
piezo disk, while Figures 1b and 1c provide examples of damaged piezo disks with 
sensor cracking and disbond, respectively. The crack and disbond locations appear as 
bright regions in the images, which indicates larger motion levels (out-of-plane) in 
those locations. The crack is easily imaged due to near-field ultrasound and free-
boundary motion effects [9], while the disbonds are imaged as modal vibration lobe 
patterns, again due to free-boundary motion effects in the disbond region. 

In the sensor cracking case (Figure 1b), the sensor was damaged during the 
installation process due to uneven pressure being applied to the sensor during the bond 
procedure. In the sensor disbond case (Figure 1c) , the sensor was not fully bonded 
across its entire surface, again due to inadequate uniform pressure being applied to the 
sensor during its application to the substrate material surface.  In both damaged cases 
depicted in Figure 1, edge-disbond effects can also be seen around the entire perimeter 
of both piezo disks, again produced from inadequate pressure being applied in the 
bond installation process in those regions of the piezo disk material. 
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           a)                b)     c)  

 
Figure 1. Displacement-field images of bonded piezoelectric disks: a) normal , b) cracked, c) disbonded. 

 
 
In addition to the sensor installation damage depicted in Figures 1b and 1c, several 

cyclic exposure assessments have been attempted previously to understand the long-
term performance characteristics of surface-bonded piezoelectric sensors for 
simulated aircraft environments [6-8].  The major results of an elevated temperature 
cycling experiment are depicted in Figure 2 for cracking and disbond occurring in 
piezoelectric sensor disks repeatedly exposed to 175oF temperature environments. For 
this particular study, a 12”x12” aluminum panel with a single piezoelectric sensor disk 
bonded in its center was exposed to repeated elevated heating conditions for 1-hour 
cycle durations.  

 

         
                 a)                 b)    c) 
 

         
                    d)                 e)    f) 
 

Figure 2. Displacement-field images of bonded piezoelectric disks subjected to repeated heat cycles: a) 
sensor 1 with zero heat cycles, b) sensor 1 with one heat cycle, c) sensor 1 with 15 heat cycles, d) sensor 
2 with zero heat cycles, e) sensor 2 with one heat cycle, and f) sensor 2 with 15 heat cycles.  

 
 
As shown in the figure, sensor disbond (Figure 2b) and sensor cracking (Figure 

2e) occurred after a single heat-cycle event. As additional heat-cycle events were 
continued, the damage progressed and worsened. Figure 2c shows a progression of the 

0 cycles 1 cycle 15 cycles 

0 cycles 1 cycle 15 cycles 

crack disbond 40nm 
 
30nm 
 
20nm 
 
10nm 
 
0nm 

40nm 
 
30nm 
 
20nm 
 
10nm 
 
0nm 

crack 

disbond 



 4

disbond conditions from a localized edge disbond event to a disbond of the entire 
bond surface by 15 heat cycle exposures. In this particular case, the piezoelectric 
sensor became completely disbonded and lost its functioning capability after 20 heat 
cycles. In Figure 2f, the crack indicated in Figure 2e has begun to involve both 
cracking and disbond damage. As described in references 8 and 9, the disbond and 
crack damage can be explained by thermally-induced stress and strain conditions 
which had occurred primarily due to coefficient of thermal expansion mismatch 
between the sensor material (PZT-5A ceramic) and the substrate material (aluminum 
2024-T3).  

A critical aspect of the surface-bonded sensor system involves the type of 
adhesive used to bond the sensor to the substrate material. In the case depicted in 
Figures 1 and 2 above, the piezoelectric sensor disks were bonded to the aluminum 
panels using very a thin layer (~1-10 microns thick) of standard strain gauge bond 
adhesive (M-Bond 200 cyanacrylate and catalyst). The use of this particular adhesive 
material was motivated by the fact that is traditionally used in large-scale fatigue 
testing studies to understand stress-strain conditions occurring in aircraft life-testing 
efforts using accelerated vibration and load conditions for typical aircraft structures. 
For strain gauge measurements, the desired performance features of the adhesive are 
to transfer load efficiently to the surface-bonded strain gauge sensor system. This 
requires that the strain gauge adhesive cure as a stiff, rigid bond material.  

For piezoelectric surface-bonded sensor applications, the opposite is actually true. 
For bonded ceramic sensor disks, it is desired that minimal load transfer occur 
between the substrate material and the sensor material. This requirement would mean 
that a more compliant adhesive bond material be used as described in the following 
analytic analysis section. With regard to coefficient of thermal expansion mismatch, 
the desire is to have a bond material that will provide a means for the sensor and the 
substrate to expand and contract without stress-strain load transfer between the two – 
again with the adhesive having a more compliant, flexible material property as 
temperature cycling occurs.   

 
 

STRESS ANALYSIS FOR BONDED PIEZOELECTRIC SENSOR DISKS 
 
The experimental results presented in the previous section provide evidence that 

surface-bonded sensors can be subjected to stress-strain conditions in a typical aircraft 
environment which can result in sensor damage and sensing performance degradation. 
Using a modified version of a one-dimensional theory of bonded joints developed by 
Rose [10], the load transfer between a surface-bonded sensor and a substrate material 
can be modeled as a shear loading process through the adhesive layer as shown in 
Figure 3. In this theory, the adhesive layer acts as a shear spring with the relationship 
for the adhesive shear stress given by: 

 
τa(y) = Gaγa = (Ga/ta)[u1(y) - u2(y)],             (1) 

 
where Ga is the adhesive shear modulus, γa is the adhesive shear strain, and ta is the 
adhesive layer thickness. The shear tractions exerted by the adhesive can be replaced 
by an equivalent body force distributed uniformly across the thickness of each 
adherent, leading to the differential equilibrium equations: 
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tpσ'p = -trσ'r(y) = τa(y),              (2) 
 
      τ''a(y) - β2τa(y) = 0.              (3) 
 
 

 
 

Figure 3. Adhesively bonded sensor geometry. 
 
 
By applying the appropriate boundary conditions, the solution for this problem is 

found over the domain (-L <= y <= L):  
 

τ'a(-L) = (Ga/ta){(σp(0)/Ep) - (σr(0)/Er)} =  (Ga/ta){(F/ Eptp) - 0},           (4) 
 

τ'a(L) = (Ga/ta){(σp(L)/Ep) - (σr(L)/Er)} =  (Ga/ta){(F/ Eptp )- 0},           (5) 
 

where the equation for β2 is given by:  
 

β 2 = (Ga/ta){(1/Eptp) + (1/Ertr)}.             (6) 
 
The relations between the derivatives of the normal stresses and the shear stress 

can be integrated to give: 
 

σp(y) = σp(-L) + (1/βtp) { 2A(cosh(βy) - cosh(-βL))} =   
  
σr(y) = σr(-L) + (1/βtr) {-2A(cosh(βy) - cosh(-βL))}             (7)  

 
         = (F/ Eptp)) (Ga/ta) (1/β2tr cosh(βL)))((cosh(βy) - cosh(-βL))). 
 

The stress conditions in the sensor can be expressed in terms of a stiffness ratio as: 
 

σr(y) = [FS/((1+ S)tr)][ 1 - { cosh(βy)/ cosh(βL)}]  
         = σr(sp)[ 1 - { cosh(βy)/ cosh(βL)}],             (8) 

 
where S is the stiffness ratio defined by: 
 

                S = (Ertr/Eptp).               (9) 

tr Ga 
ta 

tp 

Er 

Ep 

F F 

y = -L y = 0 y = L 
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The maximum stress value in the sensor is at the center, (y=0), and is given by:  
 

σr(0) = σr(sp)[ 1 - { 1/ cosh(βL)}].           (10) 
 
It is also observed that: 

)( = )(
∞→

sprrL
σσ

β
0   lim

 
,            (11) 

and  that: 
                     .0 0   lim

0 
 = )(

→ rL
σ

β
            (12) 

 
If the shear modulus becomes infinite, or the adhesive layer thickness becomes 

infinitesimal, then the stress distribution in the sensor is can be written: 
 

σr(y) = [FS/((1+ S)tr)][H(y+L) -H(y-L)],          (13) 
 
and the shear stress distribution in the adhesive interface layer can be written as: 
 

τa(y) = -trσ'r(y) = - [FS/((1+ S))][δ(y+L) -δ(y-L)].          (14) 
 

Using Equation (8), the stress conditions in a surface-bonded sensor for compliant, 
rigid, and infinitely rigid bonds can be calculated (Figure 4a), with parameters of: Ep = 
7.31 x 1010 Pa, Er = 8.40 x 1010 Pa, Ga =  (7.00 x 106 Pa for compliant, 7.00 x 108 Pa 
for rigid, and Infinite), tp = .001 m, tr = 0.0001 m, ta = 0.0001 m, L = .005m.  In order 
to lower stress transfer between the substrate and the sensor, the size of the sensor or 
adhesive shear modulus must be decreased, the adhesive layer thickness must be 
increased, or the stiffness ratio must be decreased.  

Using Equation (14), the adhesive shear stress for a compliant and rigid bond can 
be calculated (Figure 4b). From Figure 4, it is clear that the use of a compliant bond 
helps with load/stress transfer to the sensor, and also with shear stress levels in the 
adhesive layer, which both help enhance sensor durability and bond integrity. 

 
 

Reinforcement Stress vs. Dimensionless Distance

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Dimensionless Distance, y/B

St
re

ss

Ga = 7.00 E+06

Ga = 7.00 E+08

Ga = Inf inite

Interface Shear Stress vs. Dimensionless Distance

-100

-50

0

50

100

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Dimensionless Distance, y/B

Sh
ea

r 
S

tr
es

s

Ga = 7.00 E+06

Ga = 7.00 E+08

 
          a)      b) 

 
Figure 4. a) Sensor stress distribution for 1.0 N/m unit lineal load with compliant, rigid, and infinitely 
rigid bond conditions, and b) interface shear stress distribution for 1.0 N/m unit lineal load for compliant 
and rigid bond conditions. 
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CONCLUSIONS 
 

The long-term performance of integrated sensor systems represents a critical 
aspect of integrated systems health management (ISHM). Environmental effects due 
to temperature cycling, outdoor exposure, electrochemical exposure, and dynamic 
vibrations in particular can have a significant impact on the general performance of 
surface-bonded and fully-integrated sensor systems. In this research effort, the 
performance characteristics of surface-bonded piezoelectric sensors were studied 
under accelerated exposure conditions typically found in operational aircraft 
environments. Evidence of sensor performance degradation was experimentally 
observed due to undesired load transfer processes, which resulted in sensor disbond 
and cracking events. Models were developed to better understand the critical shear-
strain and viscoelastic conditions present in a typical surface-bonded sensor system, 
which permitted key material parameters related to bond and piezoelectric material 
type to be identified. Analytic model results showed the partitioning of load between 
the substrate and sensor as being dependent on the relative stiffness between the two 
materials. Regarding the influence of the adhesive material layer, the load was found 
to be asymptotically transferred into the sensor from its edge interface, moving toward 
the center of the sensor at a rate determined by the shear modulus and thickness of the 
adhesive, the substrate stiffness, and the sensor thickness. 
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